The distance exponent for Liouville first passage percolation is positive

نویسندگان

چکیده

Discrete Liouville first passage percolation (LFPP) with parameter $$\xi > 0$$ is the random metric on a sub-graph of $$\mathbb Z^2$$ obtained by assigning each vertex z weight $$e^{\xi h(z)}$$ , where h discrete Gaussian free field. We show that distance exponent for LFPP strictly positive all . More precisely, between inner and outer boundaries annulus size $$2^n$$ typically at least $$2^{\alpha n}$$ an $$\alpha depending $$ This crucial input in proof admits non-trivial subsequential scaling limits also has theoretical implications study distances quantum gravity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Passage Percolation Has Sublinear Distance Variance

Let 0 < a < b < ∞, and for each edge e of Zd let ωe = a or ωe = b, each with probability 1/2, independently. This induces a random metric distω on the vertices of Z d, called first passage percolation. We prove that for d > 1 the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C |v|/ log |v|, where C = C(a, b, d) is a constant which may only depend on a, b a...

متن کامل

Monotonicity in first-passage percolation

We consider standard first-passage percolation on Zd. Let e1 be the first coordinate vector. Let a(n) be the expected passage time from the origin to ne1. In this short paper, we note that a(n) is increasing under some strong condition on the support of the distribution of the passage times on the edges.

متن کامل

Geodesics in First-Passage Percolation

We consider a wide class of ergodic first passage percolation processes on Z2 and prove that there exist at least four one-sided geodesics a.s. We also show that coexistence is possible with positive probability in a four color Richardson’s growth model. This improves earlier results of Häggström and Pemantle [9], Garet and Marchand [7] and Hoffman [11] who proved that first passage percolation...

متن کامل

Asymptotic Shape for the Chemical Distance and First-passage Percolation on the Infinite Bernoulli Cluster

The aim of this paper is to extend the well-known asymptotic shape result for first-passage percolation on Z to first-passage percolation on a random environment given by the infinite cluster of a supercritical Bernoulli percolation model. We prove the convergence of the renormalized set of wet vertices to a deterministic shape that does not depend on the realization of the infinite cluster. As...

متن کامل

First passage percolation on the random graph

We study first passage percolation on the random graph Gp(N) with exponentially distributed weights on the links. For the special case of the complete graph this problem can be described in terms of a continuous time Markov chain and recursive trees. The Markov chain X(t) describes the number of nodes that can be reached from the initial node in time t. The recursive trees, which are uniform tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2021

ISSN: ['0178-8051', '1432-2064']

DOI: https://doi.org/10.1007/s00440-021-01093-x